Abstract

Many geometric estimation problems naturally take the form of synchronization over the special Euclidean group: estimate the values of a set of unknown poses \(x_{1},\ldots ,x_n \in \text {SE}(d)\) given noisy measurements of a subset of their pairwise relative transforms \(x_{i}^{-1}x_{j}\). Examples of this class include the foundational problems of pose-graph simultaneous localization and mapping (SLAM) (in robotics) and camera motion estimation (in computer vision), among others. This problem is typically formulated as a nonconvex maximum-likelihood estimation that is computationally hard to solve in general. Nevertheless, in this paper we present an algorithm that is able to effciently recover certifiably globally optimal solutions of the special Euclidean synchronization problem in a non-adversarial noise regime. The crux of our approach is the development of a semidefinite relaxation of the maximum-likelihood estimation whose minimizer provides the exact MLE so long as the magnitude of the noise corrupting the available measurements falls below a certain critical threshold; furthermore, whenever exactness obtains, it is possible to verify this fact a posteriori, thereby certifying the optimality of the recovered estimate. We develop a specialized optimization scheme for solving large-scale instances of this semidefinite relaxation by exploiting its low-rank, geometric, and graph-theoretic structure to reduce it to an equivalent optimization problem on a low-dimensional Riemannian manifold, and then design a Riemannian truncated-Newton trust-region method to solve this reduction effciently. We combine this fast optimization approach with a simple rounding procedure to produce our algorithm, SE-Sync. Experimental evaluation on a variety of simulated and real-world pose-graph SLAM datasets shows that SE-Sync is capable of recovering globally optimal solutions when the available measurements are corrupted by noise up to an order of magnitude greater than that typically encountered in robotics and computer vision applications, and does so more than an order of magnitude faster than the Gauss-Newton-based approach that forms the basis of current state-of-the-art techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.