Abstract

Droplet sorting and enrichment, as a prominent field within microfluidic technology, represent a pivotal stage in the manipulation of droplets and particles. In recent times, droplet sorting methods based on lab-on-disk (LOD) have garnered significant interest among researchers for their inherent merits, including high throughput, ease of operation, seamless device integration, and independence from supplementary driving forces. This study introduces a centrifugal force-driven microfluidic chip comprising spiral microchannels. The chip incorporates microhole arrays along the sidewall of the spiral channels, enabling size-based sorting and enrichment of microdroplets under the influence of multiple forces. Firstly, a comparative analysis was performed to assess the influence of the separation port structure and rotational speed on efficiency, and a mechanical modeling approach was employed to conduct kinetic analyses of droplet behavior during instantaneous separation. Those findings demonstrated a good agreement with the experimental results at ω < 100 rpm. Subsequently, sorting experiments on homogeneous droplets indicated that repetitive sorting could increase the recovery ratios, RT(α), of high-concentration droplets (20.7%) from 35.3% to over 80%. We also conducted a sorting experiment on three-component homogeneous-phase emulsions using a serially connected chip array, and the sorting throughput was 0.58 mL min-1. As a result, the RT(α) for 60 and 160 μm droplets were 99.4% and 88.9%, respectively. Lastly, we conducted elution experiments and dual-sample sorting on a single chip, and the fluorescence results demonstrated that this study provided an efficient and non-cross-contaminating sorting method for non-homogenous phase multi-sample microreactor units.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call