Abstract

The channel noise in space is nonlinear and pseudorandom so that the efficiency and security of existing group key management schemes are constrained seriously. To solve these problems, we proposed a centralized and identity-based key management scheme by using McEliece public key cryptosystem. In this scheme, the node identity is used as the parameter to generate the public key. Thus the authentication can be embedded into the verification of the public key. The group key is distributed with the protection of public key so that it can be implemented safely. Furthermore, the error correction capacity provided by McEliece public cryptosystem can eliminate the disturbance of noise. It transfers the negative influence caused by pseudorandom noise to an enhancement of security and increases the efficiency of the group key distribution over the noisy channel. The security of public key generation, forward secrecy and backward secrecy is analyzed. The performance is analyzed and compared with other schemes. The error correction capacity is simulated. The results show that our scheme can provide confidentiality, integrity, authentication, non-repudiation, failure tolerance and error correction with lower computation overhead and interaction rounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call