Abstract

We formulate a network security problem as a zero-sum game between an attacker who tries to disrupt a network by disabling one or more nodes, and the nodes of the network who must allocate limited resources to defend the network. The utility of the zero-sum game can be one of several network performance metrics that correspond to node centrality measures. We first present a fast centralized algorithm that uses a monotone property of the utility function to compute saddle-point equilibrium strategies for the case of single-node attacks and single- or multiple-node defense. We then extend the approach to the distributed setting by computing the necessary quantities using a finite-time distributed averaging algorithm. For simultaneous attacks to multiple nodes, the computational complexity grows quickly, so we propose a method to approximate the saddle-point equilibrium strategies based on sequential simplification, which performs well in simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.