Abstract
The paper is devoted to an interval difference method for solving one dimensional wave equation with the initial-boundary value problem. The method is an adaptation of the well-known central and backward difference methods with respect to discretization errors of the methods. The approximation of an initial condition is derived on the basis of expansion of a third-degree Taylor polynomial. The initial condition is also written in the interval form with respect to a discretization error. Therefore, the presented interval method includes all approximation errors (of the wave equation and the initial condition). The floating-point interval arithmetic is used. It allows to obtain interval solutions which contain all calculations errors. Moreover, it is indicated that an exact solution belongs to the interval solution obtained.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.