Abstract
Transcriptional pausing by RNA polymerase is an underlying event in the regulation of transcript elongation, yet the physical changes in the transcribing complex that create the initially paused conformation remain poorly understood. We report that this nonbacktracked elemental pause results from an active-site rearrangement whose signature includes a trigger-loop conformation positioned near the RNA 3' nucleotide and a conformation of betaDloopII that allows fraying of the RNA 3' nucleotide away from the DNA template. During nucleotide addition, trigger-loop movements or folding appears to assist NTP-stimulated translocation and to be crucial for catalysis. At a pause, the trigger loop directly contributes to the paused conformation, apparently by restriction of its movement or folding, whereas a previously postulated unfolding of the bridge helix does not. This trigger-loop-centric model can explain many properties of transcriptional pausing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.