Abstract

AbstractActivated platelets become procoagulant and efficiently promote the conversion of prothrombin to thrombin. A role of the GPIb-V-IX complex has long been postulated in view of the decreased prothrombin consumption in Bernard-Soulier patients. We evaluated the impact of GPIb-V-IX deficiency and the requirement for the GPIbα extracellular domain. In GPIbβ−/− mice, thrombin generation was profoundly decreased in tissue factor– or collagen-related peptide (CRP)–activated platelet-rich plasma and in washed platelets supplemented with normal plasma or with FVa, FXa, and prothrombin. Phosphatidylserine (PS) exposure was similarly decreased in response to thrombin, CRP, or CRP + PAR4 peptide despite a normal platelet phospholipid composition. The hypothesis that these defects originate from lack of the GPIbα N-terminal domain was evaluated after its removal from normal mouse and human platelets with Nk protease or O-sialoglycoprotein endopeptidase. Unexpectedly, the treated platelets exhibited normal thrombin generation and PS exposure, indicating that GPIb-V-IX regulates procoagulant activity independently of its GPIbα-binding region. These results suggested a more general structuring role through intracellular cytoskeleton-anchoring portions regulating responses leading to PS exposure. This hypothesis was supported by the decreased calcium mobilization observed in GPIbβ−/− platelets in response to several agonists, some acting independently of GPIb, in contrast to the normal calcium responses in Nk protease–treated platelets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call