Abstract

A collection of random variables is defined to be interchangeable if every finite subcollection has a joint distribution which is a symmetric function of its arguments. Double sequences of random variables $X_{nk}, k = 1, 2, \cdots, k_n (\rightarrow \infty), n = 1, 2, \cdots$, interchangeable (as opposed to independent) within rows, are considered. For each $n, X_{n1}, \cdots, X_{n,k_n}$ may (a) have a non-random sum, or (b) be embeddable in an infinite sequence of interchangeable random variables, or (c) neither. In case (a), a theorem is obtained providing conditions under which the partial sums have a limiting normal distribution. Applications to such well-known examples as ranks and percentiles are exhibited. Case (b) is treated elsewhere while case (c) remains open.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.