Abstract

We consider bootstrap percolation and diffusion in sparse random graphs with fixed degrees, constructed by configuration model. Every vertex has two states: it is either active or inactive. We assume that to each vertex is assigned a nonnegative (integer) threshold. The diffusion process is initiated by a subset of vertices with threshold zero which consists of initially activated vertices, whereas every other vertex is inactive. Subsequently, in each round, if an inactive vertex with threshold $$\theta $$ has at least $$\theta $$ of its neighbours activated, then it also becomes active and remains so forever. This is repeated until no more vertices become activated. The main result of this paper provides a central limit theorem for the final size of activated vertices. Namely, under suitable assumptions on the degree and threshold distributions, we show that the final size of activated vertices has asymptotically Gaussian fluctuations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call