Abstract

We describe a projective algorithm for linear programming that shares features with Karmarkar's projective algorithm and its variants and with the path-following methods of Gonzaga, Kojima-Mizuno-Yoshise, Monteiro-Adler, Renegar, Vaidya and Ye. It operates in a primal-dual setting, stays close to the central trajectories, and converges in O(√n L) iterations like the latter methods. (Here n is the number of variables and L the input size of the problem.) However, it is motivated by seeking reductions in a suitable potential function as in projective algorithms, and the approximate centering is an automatic byproduct of our choice of potential function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.