Abstract
Observations with the James Webb Space Telescope (JWST) have uncovered numerous faint active galactic nuclei (AGN) at z ∼ 5 and beyond. These objects are key to our understanding of the formation of supermassive black holes (SMBHs), their coevolution with host galaxies, as well as the role of AGN in cosmic reionization. Using photometric colors and size measurements, we perform a search for compact red objects in an array of blank deep JWST/NIRCam fields totaling ∼640 arcmin2. Our careful selection yields 260 reddened AGN candidates at 4 < z phot < 9, dominated by a point-source-like central component (〈r eff〉 < 130 pc) and displaying a dichotomy in their rest-frame colors (blue UV and red optical slopes). Quasar model fitting reveals our objects to be moderately dust-extincted (A V ∼ 1.6), which is reflected in their inferred bolometric luminosities of L bol = 1044–47 erg s−1 and fainter UV magnitudes M UV ≃ −17 to −22. Thanks to the large areas explored, we extend the existing dusty AGN luminosity functions to both fainter and brighter magnitudes, estimating their number densities to be ×100 higher than for UV-selected quasars of similar magnitudes. At the same time, they constitute only a small fraction of all UV-selected galaxies at similar redshifts, but this percentage rises to ∼10% for M UV ∼ − 22 at z ∼ 7. Finally, assuming a conservative case of accretion at the Eddington rate, we place a lower limit on the SMBH mass function at z ∼ 5, finding it to be consistent with both theory and previous JWST observations.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.