Abstract
Citric acid was thermochemically esterified onto defatted cotton fibre to produce a carboxyl cotton chelator (CCC), which had been used for extraction of copper prior to its determination by flame atomic absorption spectrometry. The extraction of copper has been studied under both batch and column methods. Quantitative extraction of copper was achieved in the pH range 4–7. The time needed to extract each sample was less than 30 min by the batch method. The copper extraction capacity of CCC was found to be 22.7 mg g−1 at optimal pH value. The elution was quantitative with 1 mol L−1 hydrochloric acid. The feasible flow rate of copper-containing solution for quantitative extraction onto the column packed with CCC was 0.5–4.0 mL min−1, whereas for elution it was less than 1.5 mL min−1. A 100-fold extraction factor could be achieved under the optimal column conditions. The tolerance limits for common metal ions on the extraction of copper and the time of column reuse were investigated. The proposed method has been successfully applied for extraction and determination of copper in industrial wastewater and natural water samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.