Abstract

A cellular-space-division-based method of moments (MoM) algorithm for the analysis of geometries involving imperfectly conducting planar radiators as well as lossy and finite-extent dielectric substrates is presented. Since the technique, via the volume equivalence theorem, replaces the structure under analysis with an equivalent structure composed of thin-wall cells, modeling of the surrounding environment is not required, hence, completely avoiding the need for absorbing boundary conditions. Real (as opposed to perfect) material parameters are incorporated via properly defined surface impedances. Several examples of radiation patterns (including radiation underneath the ground plane of a finite-extent substrate) of planar geometries are presented. The calculated patterns are compared with measured results and are found to be in good agreement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.