Abstract

Wolbachia are among the most widespread intracellular bacteria, carried by thousands of metazoan species. The success of Wolbachia is due to efficient vertical transmission by the host maternal germline. Some Wolbachia strains concentrate at the posterior of host oocytes, which promotes Wolbachia incorporation into posterior germ cells during embryogenesis. The molecular basis for this localization strategy is unknown. Here we report that the wMel Wolbachia strain relies upon a two-step mechanism for its posterior localization in oogenesis. The microtubule motor protein kinesin-1 transports wMel toward the oocyte posterior, then pole plasm mediates wMel anchorage to the posterior cortex. Trans-infection tests demonstrate that factors intrinsic to Wolbachia are responsible for directing posterior Wolbachia localization in oogenesis. These findings indicate that Wolbachia can direct the cellular machintery of host oocytes to promote germline-based bacterial transmission. This study also suggests parallels between Wolbachia localization mechanisms and those used by other intracellular pathogens.

Highlights

  • Wolbachia are among the most widespread intracellular bacteria, carried by an estimated 15%–76% of insect species as well as by some crustaceans, mites, and filarial nematodes [1,2]

  • This study focuses on Wolbachia, a genus of intracellular bacteria carried by insect and nematode host species

  • It was recently shown that Wolbachia carried into the human body by the host nematode Onchocerca volvulus trigger an immune response that leads to African river blindness

Read more

Summary

Introduction

Wolbachia are among the most widespread intracellular bacteria, carried by an estimated 15%–76% of insect species as well as by some crustaceans, mites, and filarial nematodes [1,2]. Wolbachia are closely related to the Rickettsia family, a collection of tick-borne pathogens known for causing typhus and spotted fevers in humans. Wolbachia are linked to human disease via a symbiotic relationship with pathogenic nematodes [3]. The Wolbachia-bearing nematode Onchocerca volvulus is linked to the condition African river blindness in humans. Of the 18 million people infected by O. volvulus, nearly one million are visually impaired or already blind [4]. Recent work has implicated Wolbachia directly as the cause of ocular inflammation leading to river blindness [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call