Abstract

Cellular automata (CA) models have been used in urban studies for dealing with land use change. Transport and accessibility are arguably the main drivers of urban change and have a direct influence on land use. Land use and transport interaction models deal with the complexity of this relationship using many different approaches. CA models incorporate these drivers, but usually consider transport (and accessibility) variables as exogenous. Our paper presents a CA model where transport variables are endogenous to the model and are calibrated along with the land use variables to capture the interdependent complexity of these phenomena. The model uses irregular cells and a variable neighborhood to simulate land use change, taking into account the effect of the road network. Calibration is performed through a particle swarm algorithm. We present an application of the model to a comparison of scenarios for the construction of a ring road in the city of Coimbra, Portugal. The results show the ability of the CA model to capture the influence of change of the transport network (and thus in accessibility) in the land use dynamics.

Highlights

  • Introduction and José António TenedórioLand use and transport are two areas of urban planning that share many common attributes and mutually exert a continuous interdependency that encompasses a high level of complexity

  • The model was applied to a real-world case study to simulate the impact on urban growth of the construction of an important ring road in the urban area of Coimbra, Portugal

  • An enhanced detail of the area directly served by the new road is depicted in Figure 8a for the Baseline scenario and Figure 8b for the Anel scenario. These results show that the impact of the construction of the ring road was significant, as the higher attractiveness of cells directly served by the new road due to increased accessibility was well illustrated in the land use change in the Anel scenario, with more cells changing their states to more dense urban uses

Read more

Summary

Introduction

Introduction and José António TenedórioLand use and transport are two areas of urban planning that share many common attributes and mutually exert a continuous interdependency that encompasses a high level of complexity. Land use and transport (LUT) interaction has been an intensive topic of research, combining planning, transport and economic theories and making use of different approaches that aim to analyze and simulate the interdependencies of the two areas. Along with other approaches to simulate urban systems, such as agent-based models, system dynamics or discrete choice models, CA models are capable of capturing spatial interactions, but perhaps less so in dealing with transport and its impact in urban change. For this reason, CA models need to be coupled with dedicated transport models to capture LUT interactions. The literature indicates some examples of parallel calibration of CA and transport models, but it is absent of cases where both models are fully integrated

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call