Abstract

We develop a new cell-centered control volume Lagrangian scheme for solving Euler equations of compressible gas dynamics in cylindrical coordinates. The scheme is designed to be able to preserve one-dimensional spherical symmetry in a two-dimensional cylindrical geometry when computed on an equal-angle-zoned initial grid. Unlike many previous area-weighted schemes that possess the spherical symmetry property, our scheme is discretized on the true volume and it can preserve the conservation property for all the conserved variables including density, momentum and total energy. Several two-dimensional numerical examples in cylindrical coordinates are presented to demonstrate the performance of the scheme in terms of symmetry, accuracy and non-oscillatory properties.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.