Abstract

The plasmodial surface anion channel (PSAC) is an unusual small-conductance ion channel induced on erythrocytes infected with plasmodia, including parasites responsible for human malaria. Although broadly available inhibitors produce microscopic clearance of parasite cultures at high concentrations and suggest that PSAC is an antimalarial target, they have low affinity for the channel and may interfere with other parasite activities. To address these concerns, we developed a miniaturized assay for PSAC activity and carried out a high-throughput inhibitor screen. Approximately 70,000 compounds from synthetic and natural product libraries were screened, revealing inhibitors from multiple structural classes including two novel and potent heterocyclic scaffolds. Single-channel patch-clamp studies indicated that these compounds act directly on PSAC, further implicating a proposed role in transport of diverse solutes. A statistically significant correlation between channel inhibition and in vitro parasite killing by a family of compounds provided chemical validation of PSAC as a drug target. These new inhibitors should be important research tools and may be starting points for much-needed antimalarial drugs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.