Abstract

We have purified a cell regulatory sialoglycopeptide, CeReS-18, from intact bovine cerebral cortex cells. This is an 18-kDa molecule that reversibly inhibits cellular DNA synthesis and the proliferation of a wide array of target cells. In the present study, the effect of CeReS-18 on mouse 3T6 host cell proliferation and polyomavirus replication was investigated. The results showed that CeReS-18 was able to inhibit 3T6 cell cycling in a concentration-dependent, calcium-sensitive, and reversible manner. Despite the inhibition of cell proliferation, CeReS-18 did not influence polyomavirus infection of 3T6 cells. Indirect immunofluorescent assays revealed that CeReS-18-treated, and cell cycle-arrested, 3T6 cells remained permissive to polyomavirus replication. Electron microscopy and immunogold labeling showed that new viral particles were assembled inside the nuclei of infected cells in the presence of CeReS-18 and during cell cycle arrest. The cellular requirements for the replication of polyomavirus DNA and the synthesis of viral proteins, as well as for the assembly of viral particles, therefore, remained available in CeReS-18-inhibited 3T6 cells. In addition, although polyomavirus infection can be mitogenic, infection of CeReS-18-treated 3T6 cells did not reverse the cell cycle arrest mediated by this cell cycle inhibitor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call