Abstract
As one of the key techniques of cell manipulation, the trapping, movement and rotation of cell are wildly applied in various areas including Bioengineering, Medicine, Chemical Analysis, Properties Evaluations and so on. One particular technique of cell manipulation based on stagnation point of swirl is brought up: Create a swirling flow field using three microtubules, and control the stagnation point of swirl through matching the jet velocities of the microtubules, so as to achieve the movement and rotation of the cell near the stagnation point. The microfluidics dynamic model of the swirling flow field is established, and the correlations among each direction of the swirl stagnation point in the field while the jet velocities of the three microtubules change are analyzed through simulation. Also, the mechanism and pattern that how the cell moves along with the stagnation point within the swirling flow field are discussed. We demonstrate that three microtubules in triangular layout jetting fluids in convectional directions can create swirl, and matching the jetting velocities of each microtubule in the swirling flow field can control the strength of the swirl and the location of the stagnation point. We further show that this approach can trap the cell using the region near the stagnation point of swirl. Overall, this technique can achieve the directional and quantitative movement and rotation of the cell along different directions in the swirling flow field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.