Abstract
A cell agglomeration algorithm is proposed to mitigate the computational cost of incorporating detailed chemical kinetics in multi-dimensional Computational Fluid Dynamics (CFD) simulations. Cells that are close in species and energy composition space are agglomerated before calling the reaction integrator, substantially reducing the number of chemistry integrations. The algorithm is generalized and applicable to any reacting flow configuration, and the accuracy is fully controllable. A dynamic hash table is used to efficiently bin cells into high dimensional hyper-cubes in composition space. The method is applied to four different CFD simulations and the speed-up and incurred error are assessed for a range of agglomeration tolerances and table dimensions. The proposed approach exhibits up to an order of magnitude speed-up with a relatively moderate decrease in accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.