Abstract

Abstract This paper investigates the ultimate tensile failure strength of laminated composites containing a central circular hole. Based on continuum damage mechanics, a Principal Damage Model is developed by combining the generalized standard material model with the Principal Damage concept of composite materials. Three in-plane failure modes: fiber breakage, matrix cracking, and fiber/matrix interface debonding are included in the present model. After obtaining material constants and damage relations from standard tensile tests, the material constitutive relations with damage model are implemented into commercial finite element code, abaqus . By comparing the predicted results with the experimental data, the proposed model has proven to be capable of predicting failure strength and load–deflection relations of notched laminated composites. The effects of hole size and specimen width are discussed in detail. In addition, the advantage of the present model is demonstrated through comparison with other existing models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.