Abstract

A new autocorrelation matrix eigenvalue based digital signal processing (DSP) chromatic dispersion (CD) adaptive monitoring and compensation method is proposed. It employs the average of the autocorrelation matrix eigenvalue instead of eigenvalue spread to be the metric of scanning. The average calculation has been effective in relieving the degradation of performance caused by the fluctuation of autocorrelation matrix eigenvalue. Compare with the eigenvalue spread scanning algorithm, this method reduces the monitoring errors to below 10ps/nm from more than 200ps/nm, while not increasing its computation complexity. Simulation results show that in 100Gbit/s polarization division multiplexing (PDM) quadrature phase shift keying (QPSK) coherent optical transmission system, this method improves the bit error rate (BER) performance and the system robustness against the amplified-spontaneous-emission noise.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call