Abstract

BackgroundAneuploid ermpglasm is an important resource for genetic studies and identification of individual chromosomes in the cells of the aneuploid is an important step. The karyotype has already been established for purple coneflower (Echinacea purpurea L.), but due to the high similarity in the morphology of several pairs of chromosomes in this species, it cannot be used to identify individual chromosomes in its own complement. The objectives of this study are to develop and evaluate the Giemsa C-banding technique for the purpose of identifying the individual chromosomes in Echinacea purpurea.ResultsThe established karyotype with C-bands showed that all the 11 pairs of chromosomes possessed centromeric bands. Telomeric bands appeared most frequently in almost all the chromosomes with only two exceptions, the short arm of the chromosome 9 and the long arm of the chromosome 10. Intercalary bands were found mainly in the long arm of some chromosomes with only two exceptions, the chromosomes 1 and 2 that had intercalary bands on both arms. The chromosome 4 was the only chromosome where intercalary bands were absent.ConclusionsChromosomes in E. purpurea could be stained with Giemsa to bear C-bands. By classifying the chromosomes into groups and judging the C-bands, each chromosome could be identified. The methods established in this study might be used for the identification of chromosome constitution in aneuploid E. purpurea created in a breeding program.

Highlights

  • Aneuploid ermpglasm is an important resource for genetic studies and identification of individual chromosomes in the cells of the aneuploid is an important step

  • In 2004, the karyotype of E. purpurea was first established by Qu et al.; it has been used successfully to differentiate E

  • Following the success in obtaining tetraploid E. purpurea by in vitro colchicine treatment of diploid explants

Read more

Summary

Introduction

Aneuploid ermpglasm is an important resource for genetic studies and identification of individual chromosomes in the cells of the aneuploid is an important step. The karyotype has already been established for purple coneflower (Echinacea purpurea L.), but due to the high similarity in the morphology of several pairs of chromosomes in this species, it cannot be used to identify individual chromosomes in its own complement. In 2004, the karyotype of E. purpurea was first established by Qu et al.; it has been used successfully to differentiate E. Purpurea from another Echinacea species, E. angustifoli, Ploidy breeding which includes polyploids [9, 10] and aneuploids [11, 12] has been proved to be a feasible method for many plant species. To obtain aneuploid in E. purpurea seems easy because aneuploid individuals are known to exist naturally in Asteraceae

Objectives
Methods
Results

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.