Abstract

In this paper, we examine linear conditions on finite sets of points in projective space implied by the Cayley–Bacharach condition. In particular, by bounding the number of points satisfying the Cayley–Bacharach condition, we force them to lie on unions of low-dimensional linear spaces. These results are motivated by investigations into degrees of irrationality of complete intersections, which are controlled by minimum-degree rational maps to projective space. As an application of our main theorem, we describe the fibers of such maps for certain complete intersections of codimension two.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.