Abstract
To compute factor score estimates, lavaan version 0.6–12 offers the function lavPredict( ) that can not only be applied in single-level modeling but also in multilevel modeling, where characteristics of higher-level units such as working environments or team leaders are often assessed by ratings of employees. Surprisingly, the function provides results that deviate from the expected ones. Specifically, whereas the function yields correct EAP estimates of higher-level factors, the ML estimates are counterintuitive and possibly incorrect. Moreover, the function does not provide the expected standard errors. I illustrate these issues using an example from organizational research where team leaders are evaluated by their employees, and I discuss these issues from a measurement perspective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.