Abstract

Most mainstream statistical models will achieve poor performance in Out-Of-Distribution (OOD) generalization. This is because these models tend to learn the spurious correlation between data and will collapse when the domain shift exists. If we want artificial intelligence (AI) to make great strides in real life, the current focus needs to be shifted to the OOD problem of deep learning models to explore the generalization ability under unknown environments. Domain generalization (DG) focusing on OOD generalization is proposed, which is able to transfer the knowledge extracted from multiple source domains to the unseen target domain. We are inspired by intuitive thinking about human intelligence relying on causality. Unlike relying on plain probability correlations, we apply a novel causal perspective to DG, which can improve the OOD generalization ability of the trained model by mining the invariant causal mechanism. Firstly, we construct the inclusive causal graph for most DG tasks through stepwise causal analysis based on the data generation process in the natural environment and introduce the reasonable Structural Causal Model (SCM). Secondly, based on counterfactual inference, causal semantic representation learning with domain intervention (CSRDN) is proposed to train a robust model. In this regard, we generate counterfactual representations for different domain interventions, which can help the model learn causal semantics and develop generalization capacity. At the same time, we seek the Pareto optimal solution in the optimization process based on the loss function to obtain a more advanced training model. Extensive experimental results of Rotated MNIST and PACS as well as VLCS datasets verify the effectiveness of the proposed CSRDN. The proposed method can integrate causal inference into domain generalization by enhancing interpretability and applicability and brings a boost to challenging OOD generalization problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.