Abstract
An isotropic and homogeneous cosmological model with a source of dark energy is studied. That source is simulated with a viscous relativistic fluid with minimal causal correction. In this model the restrictions on the parameters coming from the following conditions are analized: a) energy density without singularities along time, b) scale factor increasing with time, c) universe accelerated at present time, d) state equation for dark energy with "w" bounded and close to -1. It is found that those conditions are satified for the following two cases. i) When the transport coefficient ({\tau}_{{\Pi}}), associated to the causal correction, is negative, with the aditional restriction {\zeta}|{\tau}_{{\Pi}}|>2/3, where {\zeta} is the relativistic bulk viscosity coefficient. The state equation is in the "phantom" energy sector. ii) For {\tau}_{{\Pi}} positive, in the "k-essence" sector. It is performed an exact calculation for the case where the equation of state is constant, finding that option (ii) is favored in relation to (i), because in (ii) the entropy is always increasing, while this does no happen in (i).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.