Abstract

Recent studies have suggested close functional links between overt visual attention and decision making. This suggests that the corresponding mechanisms may interface in brain regions known to be crucial for guiding visual attention - such as the frontal eye field (FEF). Here, we combined brain stimulation, eye tracking, and computational approaches to explore this possibility. We show that inhibitory transcranial magnetic stimulation (TMS) over the right FEF has a causal impact on decision making, reducing the effect of gaze dwell time on choice while also increasing reaction times. We computationally characterize this putative mechanism by using the attentional drift diffusion model (aDDM), which reveals that FEF inhibition reduces the relative discounting of the non-fixated option in the comparison process. Our findings establish an important causal role of the right FEF in choice, elucidate the underlying mechanism, and provide support for one of the key causal hypotheses associated with the aDDM.

Highlights

  • Despite the fact that decision making and visual attention are both central features of cognition, we still know relatively little about how they interact

  • The authors of the present study demonstrated that inhibition of the right frontal eye field (FEF) with transcranial magnetic stimulation reduces this multiplicative effect of fixation, suggesting that the FEF might be involved in the gaze-­dependent modulation of value signals during decision making

  • Based on our computational modeling framework, we developed a paradigm that allowed us to causally manipulate value-­based choice by inhibiting the right FEF with transcranial magnetic stimulation (TMS)

Read more

Summary

Introduction

Despite the fact that decision making and visual attention are both central features of cognition, we still know relatively little about how they interact. A prominent view in decision neuroscience is that the decision process consists of sequential sampling of information, with the choice implemented once the decision maker accumulates enough net evidence in favor of one of the options (Ratcliff et al, 2016; Shadlen and Shohamy, 2016). Attention can either be directed overtly (i.e., by eye fixation) or covertly (during constant fixation), but the effects on neural processing and the underlying causal mechanisms are thought to be strongly related (Moore and Zirnsak, 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call