Abstract
Unsupervised Salient Object Detection (USOD) is a promising yet challenging task that aims to learn a salient object detection model without any ground-truth labels. Self-supervised learning based methods have achieved remarkable success recently and have become the dominant approach in USOD. However, we observed that two distribution biases of salient objects limit further performance improvement of the USOD methods, namely, contrast distribution bias and spatial distribution bias. Concretely, contrast distribution bias is essentially a confounder that makes images with similar high-level semantic contrast and/or low-level visual appearance contrast spuriously dependent, thus forming data-rich contrast clusters and leading the training process biased towards the data-rich contrast clusters in the data. Spatial distribution bias means that the position distribution of all salient objects in a dataset is concentrated on the center of the image plane, which could be harmful to off-center objects prediction. This paper proposes a causal based debiasing framework to disentangle the model from the impact of such biases. Specifically, we use causal intervention to perform de-confounded model training to minimize the contrast distribution bias and propose an image-level weighting strategy that softly weights each image's importance according to the spatial distribution bias map. Extensive experiments on 6 benchmark datasets show that our method significantly outperforms previous unsupervised state-of-the-art methods and even surpasses some of the supervised methods, demonstrating our debiasing framework's effectiveness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the AAAI Conference on Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.