Abstract
Under study is the unique solvability of a Cauchy type problem and a generalized Schowalter–Sidorov type problem for a class of linear inhomogeneous equations in Banach spaces with a degenerate operator at the Riemann–Liouville fractional derivative. We find an explicit form of a solution under some conditions for the pair of operators in the equation. To this end, we study a Cauchy type problem for an equation solvable with respect to the Riemann–Liouville derivative with an operator on the right-hand side which generates a resolving family of operators analytic in a sector. These abstract results are used to prove the unique solvability of an initial-boundary value problem for the Navier–Stokes system of equations of fractional order in time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.