Abstract

The combination of gene therapy and chemotherapy may increase the therapeutic efficacy in the treatment of patients. In this work, the cationic polymer prodrug/plasmid nanocomplexes were designed to in vivo synergistically treat drug-resistant breast tumors. Cationic β-cyclodextrin-polyethylenimine-Dox (PC-Dox) conjugates were prepared for carrying wt p53 plasmid in the form of PC-Dox/ p53 nanocomplexes to achieve synergistic cancer therapeutic effects of drug and gene therapies. Such PC-Dox /p53 nanocomplexes ensure that both drug and gene can be delivered to the same cancer cells. The physicochemical properties and Dox release profiles of the PC-Dox conjugates, as well as their antitumor activities in vitro and in vivo, were determined. mRNA expression and western blot experiments also proved that co-delivery of Dox with wt p53 plasmid from PC-Dox /wt p53 complexes could promote wt p53 gene expression largely. By investigating anticancer efficacy via multi-drug resistant MCF-7/Adr breast cancer cells, it was found that PC-Dox/wt p53 complexes promoted the inhibition of tumor growth in vivo and prolonged the survival time of tumor-bearing mice. With the efficient ability to co-deliver drug and gene, such multifunctional PC-Dox/pDNA complexes should have great potential applications in cancer therapy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.