Abstract

Axially heterostructured nanowires (NWs) constitute a promising platform for advanced electronic and optoelectronic nanodevices. The presence of different materials in these NWs introduces a mismatch resulting in complex strain distributions susceptible of changing the band gap and carrier mobility. The growth of these NWs presents challenges related to the reservoir effect in the catalysts droplet that affect to the junction abruptness, and the occurrence of undesired lateral growth creating core–shell heterostructures that introduce additional strain. We present herein a cathodoluminescence (CL) analysis on axially heterostructured InP/InGaP NWs with tandem solar cell structure. The CL is complemented with micro Raman, micro photoluminescence (PL), and high resolution transmission electron microscopy measurements. The results reveal the zinc blende structure of the NWs, the presence of a thin InGaP shell around the InP bottom cell, along with its associated strain, and the doping distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.