Abstract

Small interfering RNA (siRNA) can be exploited to silence specific genes associated with cancer development, and successful siRNA therapy is highly dependent on the efficiency of the siRNA delivery vector. Herein, a well-designed novel redox- and enzyme-responsive fluorinated polyarginine (PFC-PR) was developed to be used as an anti-cancer siRNA carrier. The multiple guanidine groups could provide positive charges and bind with siRNA efficiently, and further fluorination modification enhanced the interaction with siRNA, resulting in a more stable PFC-PR/siRNA nanocomplex, improving serum tolerance, and promoting cellular uptake and endosome escape. Meanwhile, the PFC-PR was responsive to overexpressed cathepsin B and high levels of glutathione in cancer cells, conferring its ability to enhance siRNA release within cancer cells and making it cancer-targeting. Consequently, PFC-PR showed good biocompatibility and high gene silencing efficiency, which could inhibit cancer cell growth when delivered the siRNA targeting vascular endothelial growth factor, suggesting that it can be potentially used for anti-cancer gene therapy applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.