Abstract
Abstract The quantum co-ordinate algebra Aq(g) associated to a Kac–Moody Lie algebra g forms a Hopf algebra whose comodules are direct sums of finite-dimensional irreducible Uq(g) modules. In this paper, we investigate whether an analogous result is true when q=0. We classify crystal bases as coalgebras over a comonadic functor on the category of pointed sets and encode the monoidal structure of crystals into a bicomonadic structure. In doing this, we prove that there is no coalgebra in the category of pointed sets whose comodules are equivalent to crystal bases. We then construct a bialgebra over Z whose based comodules are equivalent to crystals, which we conjecture is linked to Lusztig’s quantum group at v=∞.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.