Abstract

The syntactic monoid of a language is generalized to the level of a symmetric monoidal closed category $\mathcal D$. This allows for a uniform treatment of several notions of syntactic algebras known in the literature, including the syntactic monoids of Rabin and Scott ($\mathcal D=$ sets), the syntactic ordered monoids of Pin ($\mathcal D =$ posets), the syntactic semirings of Pol\'ak ($\mathcal D=$ semilattices), and the syntactic associative algebras of Reutenauer ($\mathcal D$ = vector spaces). Assuming that $\mathcal D$ is a commutative variety of algebras or ordered algebras, we prove that the syntactic $\mathcal D$-monoid of a language $L$ can be constructed as a quotient of a free $\mathcal D$-monoid modulo the syntactic congruence of $L$, and that it is isomorphic to the transition $\mathcal D$-monoid of the minimal automaton for $L$ in $\mathcal D$. Furthermore, in the case where the variety $\mathcal D$ is locally finite, we characterize the regular languages as precisely the languages with finite syntactic $\mathcal D$-monoids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.