Abstract
The aim of this paper is to exploit the structure of strongly continuous operator semigroups in order to formulate a categorical framework in which a fresh perspective can be applied to past operator theoretic results. In particular, we investigate the inverse-producing Arens extension for Banach algebras (Trans. Am. Math. Soc. 88:536–548, 1958) adapted for operators and operator semigroups by Batty and Geyer (J. Oper. Theory 78(2):473–500, 2017) in this new framework, asking and answering questions using categorical language. We demonstrate that the Arens extension defines an extension functor in this setting and that it forms an adjunction with the suitably defined forgetful functor. As a by-product of this categorical framework, we also revisit the work on Banach direct sums by Lachowicz and Moszyński (Semigroup Forum 93(1):34–70, 2016). This paper can be considered as a brief exploration of the triple interface between operator semigroups, Banach algebras, and category theory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.