Abstract

In confined space fires, the large amount of CO generated by incomplete combustion of carbon-based materials poses a serious threat to the trapped people. However, the efficient method of removing CO in such disasters remains a great challenge. Herein, a spraying catalyst powder (SCP) approach is proposed for CO removal by oxidizing CO to harmless CO2. Cu/Mn catalyst, synthesized by using ethylene glycol as solvent, was employed in this study. The influence of catalyst concentration, temperature, CO2 concentration and initial CO concentration on CO removal performance of SCP approach was investigated. With 500 g/m3 catalyst, 25,000 ppm CO could be reduced to 2550 ppm within 1 min and completely removed in less than 2.83 min at 200 °C. The feasibility of SCP approach in practical application was validated by the remarkable CO removal performance for charcoal combustion in confined tunnel. SCP approach could effectively reduce the CO concentration, which would reach up to 12,659 ppm in the absence of SCP approach, to less than 1500 ppm within 30 min. The experiment results suggest that SCP technology can effectively remove the fire-generated CO and is promising for practical application in crowded occupancies, such as underground space and aircraft compartment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.