Abstract

A Cast Modular Ductile Bracing System (CMDB) is under development as an alternative to special concentrically braced frames. The CMDB system introduces cast components at the ends and center of the brace in an attempt to produce a system with reliable strength, stiffness, and deformation capacity. A cruciform cross-section has been chosen for the cast component geometry, which is specially detailed to enhance energy dissipation and increase low cycle fatigue life thereby reducing the likelihood of fracture. In this paper, capacity design parameters are established that describe the axial strength and flexural strength of the cast components relative to the main hollow structural section member. These parameters are varied in 2D finite element models to understand the nature of the system and identify the best performing designs. 3D FE models of the CMDB system and a typical special concentrically braced frame, in combination with fracture indices, are used to compare the expected low cycle fatigue life of the two systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.