Abstract

Recent technology development and penetration of advanced metering infrastructure (AMI), advanced building control systems, and the internet-of-things (IoT) in the built environment are providing detailed information on building operation, performance, and user’s comfort and behavior. Building owners can obtain a wide range of energy consumption details at various levels of time granularity to augment their decisions as they manage the building operation and interact with the grid. AMI data are providing a new level of detail and visibility that may enhance building services and assets in the smart grid domain and make buildings inch closer to becoming a grid-interactive energy efficient buildings (GEB). While utility-installed AMI typically records energy consumption at a 15, 30, or 60-minute resolution, building-owner-installed metering can record energy consumption at one-minute or sub-minute time scales, providing information about how much the energy consumption varies from one sub-minute to the other (i.e. variability) at a finer time resolutions than typically available from AMI. This paper examines one-minute building load profile data sets and presents a framework to study, define, extract, quantify and analyze variability in buildings’ load profiles. The discussion of variability and its analysis is based on a case study of an actual sub-minute time-resolution data set, collected in 2019, for two buildings in a Midwest state in the USA. The result shows that for the case studies, the level of variability in an end-use category is not simply proportional to its consumption. Furthermore, distinct and predictable daily variability patterns emerge in end-use load categories. This information is useful for a host of applications including prediction, forecasting, and modeling.

Highlights

  • As the number of electrical loads in the built environment continues to grow and the penetration of distributed energy resources (DERs) continues to increase, their voltage, frequency and power consumption/generation fluctuations in real time must be considered for thorough analysis

  • When DER is interconnected to the distribution system, conventional distribution studies and special system impact studies methodologies need to be considered as explained in IEEE Std 1547.7 [1], [2]

  • The presented work examines high resolution building energy consumption load profiles and presents a methodology to analyze it and extract useful information that can be used in a host of applications

Read more

Summary

A Case Study to Quantify Variability in Building Load Profiles

Andrew Parker1, Sam Moayedi2, Kevin James2, Dongming Peng3, and Mahmoud Alahmad1,2 (Senior Member, IEEE) This work was authored in part by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S Department of Energy (DOE) under Contract No DE-AC36-08GO28308. Funding provided by U.S Department of Energy Office of Energy Efficiency and Renewable Energy Building Technologies Office.

INTRODUCTION
VARIABILITY IN BUILDING LOAD PROFILES
DEMONSTRATING VARIABILITY EXTRACTION USING A CASE STUDY
ANALYZING BUILDING LOAD PROFILE VARIABILITY
Findings
SUMMARY AND CONCLUSIONS
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call