Abstract

AbstractThe big underground powerhouse cavern of the China Baihetan hydropower plant is 438 m long, 34 m wide, and 88.7 m high. It is cut by a weak interlayer shear zone and its high sidewall poses a huge stability problem. This paper reports our successful solution of this problem through numerical simulations and a replacement‐tunnel scheme in the detailed design stage and close site monitoring in the excavation stage. Particularly, in the detail design stage, mechanical parameters of the shear zone were carefully determined through laboratory experiments and site tests. Then, deformation of the surrounding rocks and the shear zone under high in situ stress conditions was predicted using 3 Dimensional Distinct Element Code (3DEC). Subsequently, a replacement‐tunnel scheme was proposed for the treatment on the shear zone to prevent severe unloading relaxation of surrounding rocks. In the construction period, excavation responses were closely monitored on deformations of surrounding rocks and the shear zone. The effect of local cracking in the replacement tunnels on sidewall stability was evaluated using the strength reduction method. These monitoring results were compared with the predicted numerical simulation in the detailed design stage. It is found that the shear zone greatly modified the deformation mode of the cavern surrounding rocks. Without any treatment, rock mass deformation on the downstream sidewall was larger than 125 mm and the shearing deformation of the shear zone was 60–70 mm. These preset replacement tunnels can reduce not only the unloading and relaxation of rock masses but also the maximum shearing deformation of the shear zone by 10–20 mm. The predictions by numerical simulation were in good agreement with the monitoring results. The proposed tunnel‐replacement scheme can not only restrain the shear zone deformation but also enhance the safety of surrounding rocks and concrete tunnels. This design procedure offers a good reference for interaction between a big underground cavern and a weak layer zone in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.