Abstract

Roof bolting has long been used in underground mines across the world to provide ground support. Modern roof bolts are cheap and easy to install with the use of specialized machines as a part of the production cycle. Lhoist North America’s Crab Orchard Mine is an underground room and pillar limestone mine that uses mechanically anchored roof bolts for ground support. The mine currently employs two different roof bolting patterns: a standard 1.5 × 1.5 m pattern, and another 0.8 × 0.8 m pattern for use in areas with particularly hazardous roof conditions. The purpose of this study is to evaluate the relative effectiveness of each bolting pattern. A series of numerical models were created using RocScience’s RS2. The models were based on a symmetrical section of the mine at its deepest point, and were modeled using generalized Hoek-Brown failure criterion along with a discrete fracture network. A series of sensitivity analyses were performed on the models by varying parameters such as joint friction angle, crack persistence, joint randomization, and tensile strength of the limestone. Based on the results of the original models and sensitivity analyses, it appeared that the standard bolting pattern provided sufficient roof support capacity under almost all the expected conditions at the mine, since safety factors below the design value of 1.5 were only found for individual bolts in a few of the worst test cases considered. These results can help improve the mine’s productivity and reduce operating costs without compromising safety.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call