Abstract
Microplastic pollution has become pervasive in aquatic ecosystems. They readily interact with aquatic biota, potentially subjecting them to ecological and health risks. Urban rivers are also affected by microplastics due to intense anthropogenic activity. Nevertheless, relatively little is known about the physiocochemistry or ecotoxicology of microplastics in urban rivers. The present study used laser direct infrared chemical imaging to investigate microplastic pollution in a highly urbanized river in Beijing, China. Surface water was sampled at five sites along the river in March and July, and the benthic snail Bellamya aeruginosa was also collected at each location in July. Thirteen and fifteen different polymers were detected and identified in the surface water sampled in March and July, respectively. Thirteen different polymers were found and isolated in the snails. Of these, polypropylene, polyamide and polyethylene predominated in the microplastic particles. Moreover, the average abundance of the microplastic was significantly higher in the surface water sampled in July (39.55 ± 4.78 particles L−1) than in March (22.00 ± 4.87 particles L−1) (p < 0.05). The average microplastic abundance of snails across all sites was 28.13 ± 4.18 particles, among which the Q2 site has significantly higher microplastic abundance than station Q3-Q5 (p < 0.05). Microplastic particles 10–100 μm in size predominated in both the surface water and the snails. By contrast, the proportions of microplastic particles 200–500 μm in size were substantially smaller. The measured microplastic pollution load and microplastic pollution risk indices in the surface water indicated that the current microplastic pollution level in the Qing River was moderate from upstream to downstream. Moreover, the potential adverse effects of microplastic particles on snails remain unclear. Further research is required to elucidate small-size microplastics' environmental fate and potential ecological risks in urban rivers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.