Abstract

Cell imbalance in large battery packs degrades their capacity delivery, especially for cells connected in series where the weakest cell dominates their overall capacity. In this article, we present a case study of exploiting system reconfigurations to mitigate the cell imbalance in battery packs. Specifically, instead of using all the cells in a battery pack to support the load, selectively skipping cells to be discharged may actually enhance the pack’s capacity delivery. Based on this observation, we propose CSR, a Cell Skipping-assisted Reconfiguration algorithm that identifies the system configuration with (near)-optimal capacity delivery. We evaluate CSR using large-scale emulation based on empirically collected discharge traces of 40 lithium-ion cells. CSR achieves close-to-optimal capacity delivery when the cell imbalance in the battery pack is low and improves the capacity delivery by about 20% and up to 1x in the case of a high imbalance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call