Abstract

Monitoring tidal dynamics is imperative to disaster management because it requires a high level of precision to avert possible dangers. Good knowledge of the physical drivers of tides is vital to achieving such a precision. The Taehwa River in Ulsan City, Korea experiences tidal currents in the estuary that drains into the East Sea. The contribution of wind to tide prediction is evaluated by comparing tidal predictions using harmonic analysis and three deep learning models. Harmonic analysis is conducted on hourly water level data from 2010–2021 using the commercial pytides toolbox to generate constituents and predict tidal elevations. Three deep learning models of long short-term memory (LSTM), gated recurrent unit (GRU), and bi-directional lstm (BiLSTM) are fitted to the water level and wind speed to evaluate wind and no-wind scenarios. Results show that Taehwa tides are categorized as semidiurnal tides based on a computed form ratio of 0.2714 in a 24-h tidal cycle. The highest tidal range of 0.60 m is recorded on full moon spring tide indicating the significant lunar pull. Wind effect improved tidal prediction NSE of optimal LSTM model from 0.67 to 0.90. Knowledge of contributing effect of wind will inform flood protection measures to enhance disaster preparedness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.