Abstract

AbstractIn the machining of hard material, the cutting force has a direct impact on the lifetime of the cutting tool, the vibration of the system, and more importantly the quality of the machined surface. On the other hand, the cutting force can be easily observed by using a three-component dynamometer. The goal of this research was to minimize the cutting force during milling JIS SKD61 steel under minimum quantity lubrication (MQL) aided SiO2 nanoparticles. The resultant cutting force was determined by three components: the feed force (Fx), the thrust force (Fy), and the tangential force (Fz). Cutting speed, feed rate, and depth of cut together with the hardness of the work-piece were selected as input parameters. Experiments were carried out based on the G. Taguchi method with L27 orthogonal arrays was used to find the effects of input parameters on the resultant cutting force. Analysis of variance (ANOVA) showed that the depth of cut had the most influence on the cutting force.KeywordsHard millingCutting forceSiO2 nanoparticleJIS SKD61Taguchi method

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call