Abstract

Hydraulic fracturing can occur in the clay core of an earth and rock-fill dam if the vertical effective stress in the core is reduced to levels that are small enough to allow a tensile fracture to occur. This situation may arise if the total stress in the core is reduced by the "arching effect" where the core settles relative to the rock-fill shoulders of the dam. Water pressure increases in the core which occur on first impounding of water will reduce effective stresses further, and if they reach low enough values, a fracture will occur. The design of earth dams to resist hydraulic fracture is therefore of great importance (especially those dams with thin vertical or near-vertical central cores), as there have been several dam failures in the past that have been attributed to hydraulic fracture. This paper presents a method of predicting hydraulic fracture in the core of earth and rock-fill dams by using a numerical procedure based on the finite element method. The finite element procedure makes use of special joint elements that allow fluid flow and fracture to be modeled and is an advance over previous methods in that it allows the complete history of pore-pressure development in the core of a dam to be simulated. A study of the behaviour of the Hyttejuvet Dam, which was thought to have failed due to hydraulic fracturing, is also carried out, and the results of the analysis suggest that the failure of the dam was probably due to hydraulic fracturing that occurred during first filling of the reservoir. The fractures predicted occur at about the location that the actual fracture was thought to have been located. Key words: hydraulic fracture, earth and rock-fill dams, finite element method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call