Abstract
Hybrid manufacturing (HM) is a process that combines additive manufacturing (AM) and subtractive manufacturing (SM). It is becoming increasingly recognized as a solution capable of producing components of high geometric complexity, while at the same time ensuring the quality of the surface finish, rigour and geometric tolerance on functional surfaces. This work aims to study the surface finish quality of an orthopaedic hip resurfacing prosthesis obtained by HM. For this purpose, test samples of titanium alloy Ti-6Al-4V using two Power Bed Fusion (PBF) processes were manufactured, which were finished by turning and 5-axis milling. It was verified that, upon the machining tests, no differences in Ra and Rt were found between the various types of AM. Regarding the type of SM used, 5-axis milling provided lower roughness results with a consistent value of Ra = 0.6 µm. The use of segmented circle mills in 5-axis milling proved to be an asset in achieving a good surface finish. This work successfully validated the concept of HM to produce a medical device, namely, an orthopaedic hip prosthesis.As far as surface quality is concerned, it could be concluded that the optimal solution for this case study is 5-axis milling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The International Journal of Advanced Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.