Abstract

The study examines the application of dry gas injection technology (cycling process) in different depletion stages (25%, 50%, 75%, 100% of the initial reservoir pressure, and the dew point pressure) at a gas condensate field. The injection took place with varying numbers of injection wells relative to production wells (4:1, 3:1, 2:1, 1:1, and 1:2). The study assessed the impact of dry gas injection periods, ranging from 1 to 3 years, on increasing the condensate recovery factor in a real gas condensate reservoir named X. A hydrodynamic model was used and calibrated with historical data, resulting in a comprehensive approach. Compared to the traditional depletion development method, this approach led to a significant 9% rise in the condensate recovery factor. The results indicate that injection has a positive effect on enhancing the recovery factor of condensate and gas when compared to primary development methods based on depletion. As a result, these findings facilitate a rapid evaluation of the possibility of introducing similar measures in gas-condensate reservoirs in the future for reservoir systems that have a low and moderate potential for liquid hydrocarbons C5+. The optimised multidimensional hydrodynamic calculations, utilising geological and technological models, are crucial in determining the parameters for the technological production and injection wells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call