Abstract

The study examines the application of dry gas injection technology (cycling process) in different depletion stages (25%, 50%, 75%, 100% of the initial reservoir pressure, and the dew point pressure) at a gas condensate field. The injection took place with varying numbers of injection wells relative to production wells (4:1, 3:1, 2:1, 1:1, and 1:2). The study assessed the impact of dry gas injection periods, ranging from 1 to 3 years, on increasing the condensate recovery factor in a real gas condensate reservoir named X. A hydrodynamic model was used and calibrated with historical data, resulting in a comprehensive approach. Compared to the traditional depletion development method, this approach led to a significant 9% rise in the condensate recovery factor. The results indicate that injection has a positive effect on enhancing the recovery factor of condensate and gas when compared to primary development methods based on depletion. As a result, these findings facilitate a rapid evaluation of the possibility of introducing similar measures in gas-condensate reservoirs in the future for reservoir systems that have a low and moderate potential for liquid hydrocarbons C5+. The optimised multidimensional hydrodynamic calculations, utilising geological and technological models, are crucial in determining the parameters for the technological production and injection wells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.