Abstract
Recent studies using satellite observations show that operational wind farms in west-central Texas increase local nighttime land surface temperature (LST) by 0.31–0.70 °C, but no noticeable impact is detected during daytime, and that the diurnal and seasonal variations in the magnitude of this warming are likely determined by those in the magnitude of wind speed. This paper further explores these findings by using the data from a year-long field campaign and nearby radiosonde observations to investigate how thermodynamic profiles and surface–atmosphere exchange processes work in tandem with the presence of wind farms to affect the local climate. Combined with satellite data analyses, we find that wind farm impacts on LST are predominantly determined by the relative ratio of turbulence kinetic energy (TKE) induced by the wind turbines compared to the background TKE. This ratio explains not only the day–night contrast of the wind farm impact and the warming magnitude of nighttime LST over the wind farms, but also most of the seasonal variations in the nighttime LST changes. These results indicate that the diurnal and seasonal variations in the turbine-induced turbulence relative to the background TKE play an essential role in determining those in the magnitude of LST changes over the wind farms. In addition, atmospheric stability determines the sign and strength of the net downward heat transport as well as the magnitude of the background TKE. The study highlights the need for better understanding of atmospheric boundary layer and wind farm interactions, and for better parameterizations of sub-grid scale turbulent mixing in numerical weather prediction and climate models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.