Abstract
Abstract Results are presented from a combined numerical and observational study of the convective boundary layer (CBL) diurnal evolution on a day of the International H2O Project (IHOP_2002) experiment that was marked by the passage of a dryline across part of the Oklahoma and Texas Panhandles. The initial numerical setup was based on observational data obtained from IHOP_2002 measurement platforms and supplementary datasets from surrounding locations. The initial goals of the study were as follows: (i) numerical investigation of the structure and evolution of the relatively shallow and homogeneous CBL east of the dryline by means of large-eddy simulation (LES), (ii) evaluation of LES predictions of the sheared CBL growth against lidar observations of the CBL depth evolution, and (iii) comparison of the simulated turbulence structures with those observed by lidar and vertically pointing radar during the CBL evolution. In the process of meeting these goals, complications associated with comparisons between LES predictions and atmospheric observations of sheared CBLs were encountered, adding an additional purpose to this study, namely, to convey and analyze these issues. For a period during mid- to late morning, the simulated CBL evolution was found to be in fair agreement with atmospheric lidar and radar observations, and the simulated entrainment dynamics were consistent with those from previous studies. However, CBL depths, determined from lidar data, increased at a faster rate than in the simulations during the afternoon, and the wind direction veered in the simulations more than in the observations. The CBL depth discrepancy can be explained by a dryline solenoidal circulation reported in other studies of the 22 May 2002 case. The discrepancy in winds can be explained by time variation of the large-scale pressure gradient, which was not included in LES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.